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Abstract
In this paper, we present an efficient alternative method for the evaluation of
the three-photon transition matrix element in the dipole approximation from
the ground state to bound states in atomic hydrogen. This method is a variation
of the Dalgarno–Lewis method for the treatment of the second-order Stark
effect in the hydrogen atom. In this approach, the infinite double sum over the
complete set of states including the continuum states present in the third-order
perturbation theory result is treated exactly. The closed analytical expression
obtained for the matrix element, as a function of incident photon energy, clearly
displays all singularities present in the original third-order perturbation theory
result.

PACS numbers: 32.80.Wr, 42.50.Hz

1. Introduction

When perturbative methods are used for the evaluation of multiphoton transition rates, a major
difficulty found in such calculations is the infinite sum over the complete set of intermediate
states, which includes both discrete and continuum states. Among different methods [1], the
differential equation method using the implicit summation technique of Dalgarno and Lewis
[2] is more advantageous both in terms of computational efficiency and numerical accuracy
than other methods which approximate the summation by various truncation schemes [3].
There are many known ways of calculating these transition matrix elements [4, 5]. The use of
the Dalgarno–Lewis method reduces the problem formally to finding the solution of a set of
coupled inhomogeneous differential equations. Here we apply this method for the evaluation
of the three-photon transition matrix element from the ground state in atomic hydrogen and
obtain an alternative analytical expression [6] for the transition matrix element. This is a very
useful method if the details of entire intermediate states are not known as in alkali atoms.
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2. Method of implicit summation

In this paper, we consider the three-photon transitions in atomic hydrogen using a radiation
with frequency ω polarized along the z-axis. In the dipole approximation, the three-photon
transition rate for the hydrogen atom from an initial ground state |g〉 to a final state |f 〉 can be
calculated using the following transition matrix element in the atomic unit [7]:

D
(3)
fg =

∑
i,i ′

〈f |z|i〉〈i|z|i ′〉〈i ′|z|g〉
(Ei − Eg − 2ω)(Ei ′ − Eg − ω)

(1)

where the summation includes discrete as well as continuum states. Here z is in units of the
Bohr radius a, and the energies Eg , Ei,Ei ′ and ω are in units of (e2/a). The main objective
of the present work is to obtain an alternative expression for the matrix element given in
equation (1) retaining all analytical structure as a function of the incident photon energy ω. In
order to perform the infinite double summation over the complete set of states including the
contribution from continuum states, we extend the Dalgarno–Lewis method by defining two
auxiliary dimensionless operator D1 and D2 as follows

z|g〉 = (D1H0 − H0D1 + ωD1)|g〉 (2)

and

zD1|g〉 = (D2H0 − H0D2 + 2ωD2)|g〉 (3)

where H0 is the hydrogen atom Hamiltonian in atomic units and

H0 = −∇2

2
− 1

r
. (4)

Now, using the closure relation
∑

i |i〉〈i| = I , where I is the unit operator and substituting
equations (2) and (3) into equation (1) we can write

D
(3)
fg = 〈f |zD2|g〉. (5)

Thus, the problem of finding an analytical expression for the transition matrix element is
reduced to a problem of finding a possible analytical expression for the operator D2. It is
useful to note that the operator D1 can be used [8] to express the two-photon transition matrix
element D

(2)
fg given by

D
(2)
fg =

∑
i

〈f |z|i〉〈i|z|g〉
Eg − Ei + ω

(6)

as

D
(2)
fg = 〈f |zD1|g〉. (7)

In this way, we can also obtain an alternative analytical expression [9] for the two-photon
transition matrix element.

Now using |g〉 = exp(−r)/
√

π as the ground-state wavefunction of the hydrogen atom,
the angular separation of the functions D1 and D2 can be performed by writing

D1(r) = rψ1(r)P1(cos θ) (8)

and

D2(r) = ψ0(r) + r2ψ2(r)P2(cos θ) (9)

where Pl(·) is the Legendre polynomial of order l. Substituting equations (8) and (9) into
equations (2) and (3) the angular separation can easily be achieved and the following differential
equations can be obtained for the unknown radial functions ψ1, ψ0 and ψ2:
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r
d2

dr2
ψ1(r) + (4 − 2r)

d

dr
ψ1(r) + (2ωr − 2)ψ1(r) = 2r (10)

r
d2

dr2
ψ0(r) + (2 − 2r)

d

dr
ψ0(r) + 4ωrψ0(r) = 2

3
r3 ψ1(r) (11)

r
d2

dr2
ψ2(r) + (6 − 2r)

d

dr
ψ2(r) + (4ωr − 4)ψ2(r) = 4

3
rψ1(r). (12)

Using the following notations:

Dlλ = r
d2

dr2
+ (2l + 2 − 2r)

d

dr
+ (1 − λ2) r − 2l. (13)

λ1 = √
1 − 2ω (14)

λ0 = λ2 = √
1 − 4ω (15)

equations (10)–(12) can be written as a single equation

Dlλl
ψl(r) = fl(r) (16)

where f1(r) = 2r, f0(r) = (2/3)r3ψ1(r) and f2(r) = (4/3)rψ1(r) and equations (10)–(12)
can be obtained by taking l = 1, 0 and 2, respectively, in equation (16). The solutions to
the differential equations (10)–(12) can be obtained by the method of Laplace transform [10].
This is achieved by using the following definitions:

K(p, q, λ, s) =
(

1 − λ

1 + λ

) 1
λ

(s + λ)p+ 1
λ (s − λ)q− 1

λ (17)

�(p, q, λ, t, r) =
∫ t

λ

ds e−r(s−1)K(p, q, λ, s) (18)

where p, q and λ are real numbers. The integrals in equation (18) are defined only for
q − 1/λ > −1. It is easy to analytically continue this definition for q − 1/λ < −1 also.
This is done by writing (s − λ)q− 1

λ = ∂
/
∂s

{
(s − λ)q+1− 1

λ

}/(
q + 1 − 1

λ

)
in equation (18) and

performing a partial integration. By neglecting the lower limit contribution of the integrated
part we obtain

�(p, q, λ, t, r) = 1

q + 1 − 1
λ

{
e−r(t−1)K(p, q + 1, λ, t)

+ r�(p, q + 1, λ, t, r) −
(

p +
1

λ

)
�(p − 1, q + 1, λ, t, r)

}
. (19)

This is an important recurrence relation and it can be used to analytically continue the
function �(p, q, λ, t, r) for q − 1/λ > −2, since the right-hand side of the equation is well
defined for q − 1/λ > −2. It also clearly displays the singularities of �(·) as a function
of λ. The function �(·) has simple poles at q + 1 = 1/λ. By repeating this procedure we
can see that the function �(·) has simple poles for those values of λ such that q + n = 1/λ

where n = 1, 2, 3, . . . . The transition matrix element can be expressed in terms of this
function with q as a positive integer. Since λ is related to the photon frequency ω, these
values of λ correspond to one- and two-photon intermediate resonance singularities present in
equation (1). Now using the following relations:

d

dr
�(p, q, λ, t, r) =

∫ t

λ

ds e−r(s−1)K(p, q, λ, s)(1 − s)

r�(p, q, λ, t, r) = −
∫ t

λ

ds
∂

∂s
{e−r(s−1)}K(p, q, λ, s)
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and by taking p = q = l in equation (18) and operating Dlλ given by equation (13) on it,
after performing a partial integration and rearranging the expressions, we obtain an important
relation

Dlλ�(l, l, λ, t, r) = −e−r(t−1)K(l + 1, l + 1, λ, t) (20)

where we have assumed q+1−1/λ > 0. For an arbitrary function ψ(r), we have the following
relations also:

Dlλ(rψ) = rDlλψ + 2r
d

dr
ψ + (2l + 2 − 2r)ψ (21)

D0λ0ψ = D1λ1ψ − 2
d

dr
ψ + (2ωr + 2)ψ (22)

D2λ2ψ = D1λ1ψ + 2
d

dr
ψ + (2ωr − 2)ψ. (23)

Now using the relations in equations (20)–(23) and after some algebra we can show that the
following are the solutions to equations (10)–(12):

ψ1(r) = 1

ω
− 1

2ω3
�(1, 1, λ1, 1, r) (24)

ψ0(r) = 2

3ω2

{
r2

4
+

1

4ω2
(1 − 2λ1) − 3

8ω

}
− 1

3λ1ω4
�(0, 0, λ2, 1, r)

− 1

6ω4

{
r2 +

λ1

ω
r − 1

ω

(
1 +

1

λ1

)}
�(1, 1, λ1, 1, r)

− 1

3ω4

(
1 +

1

λ1

)∫ 1

λ1

dt
K(1, 1, λ1, t)

K(1, 1, λ2, t)

×
{

1 − 2ω

ω(1 + λ1)
− t

ω
− 2

t + λ1
+

2

(t + λ1)2

}
�(0, 0, λ2, t, r) (25)

ψ2(r) = 1

3ω2
− 1

3ω4
�(1, 1, λ1, 1, r) +

2

3ω4

∫ 1

λ1

dt
K(1, 1, λ1, t)t

K(3, 3, λ2, t)
�(2, 2, λ2, t, r) (26)

where we have used the identity K(l, l, λ, 1) = (1 − λ2)l , and λ1 and λ2 are given in
equations (14) and (15).

The transition matrix element from the ground state to a final state |f 〉 with principle
quantum number n and orbital angular momentum l can be calculated by taking [11]

|f 〉 = |nl〉 =
√

2l + 1

4π
Rnl(r)Pl(cos θ) (27)

where

Rnl(r) = 2

nl+2(2l + 1)!

√
(n + l)!

(n − l − 1)!
(2r)l exp

(
− r

n

)
F

(
l + 1 − n, 2l + 2,

2r

n

)
(28)

and F(·) is the confluent hypergeometric function. Substituting equations (27), (8) and (9)
into equation (5) and using the orthogonality relation for Legendre polynomials, we can see
that the transitions are possible only for l = 1 and l = 3 states, which are the well-known
selection rules for three-photon transitions. Now we denote D

(3)
fg by D

(3)
nl and matrix element

for the l = 1 transition can be written as

D
(3)
n1 = 2√

3

∫ ∞

0
drRn1(r) e−r

{
r3ψ0(r) +

2

5
r5ψ2(r)

}
. (29)
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Similarly the matrix element for the l = 3 transition is

D
(3)
n3 = 6

5
√

7

∫ ∞

0
drRn3(r)r

5 e−rψ2(r). (30)

Using equations (25) and (26) in equations (29) and (30), the r integration can be performed
exactly. For its evaluation, the following definitions are very useful:

Inl(s, k) =
∫ ∞

0
drRnl(r) e−rsrk (31)

Inl(p, q, λ, t, k) =
∫ ∞

0
drRnl(r) e−r rk�(p, q, λ, t, r)

=
∫ t

λ

ds K(p, q, λ, s)Inl(s, k). (32)

The following relations [12] are also useful for the numerical evaluation of the transition
matrix elements:

Inl(s, l + 1) = 2l+1

nl+2

√
(n + l)!

(n − l − 1)!

(
s − 1

n

)n−l−1

(
s + 1

n

)n+l+1 (33)

Inl(s, k + 1) = − ∂

∂s
Inl(s, k). (34)

With these we can write∫ ∞

0
drRnl(r) e−r r5ψ2(r) = 1

3ω2
Inl(1, 5) − 1

3ω4
Inl(1, 1, λ1, 1, 5)

+
2

3ω4

∫ 1

λ1

dt
K(1, 1, λ1, t)t

K(3, 3, λ2, t)
Inl(2, 2, λ2, t, 5) (35)

∫ ∞

0
drRnl(r) e−r r3ψ0(r) = 1

6ω2
Inl(1, 5) +

2

3ω2

{
1

4ω2
(1 − 2λ1) − 3

8ω

}
Inl(1, 3)

− 1

3λ1ω4
Inl(0, 0, λ2, 1, 3) − 1

6ω4

{
Inl(1, 1, λ1, 1, 5) +

λ1

ω
Inl(1, 1, λ1, 1, 4)

− 1

ω

(
1 +

1

λ1

)
Inl(1, 1, λ1, 1, 3)

}
− 1

3ω4

(
1 +

1

λ1

) ∫ 1

λ1

dt
K(1, 1, λ1, t)

K(1, 1, λ2, t)

×
{

1 − 2ω

ω(1 + λ1)
− t

ω
− 2

t + λ1
+

2

(t + λ1)2

}
Inl(0, 0, λ2, t, 3). (36)

By choosing proper values for l in equations (35) and (36) the transition matrix elements D
(3)
n1

and D
(3)
n3 in equations (29) and (30) can be calculated.

3. Numerical results and conclusions

The integrals in equations (35) and (36) can be numerically evaluated for various values for n.
Since we are considering the three-photon transition from the ground state to an excited state
with principle quantum number n, the corresponding ω = (1 − n−2)/6. Repeated use of the
recurrence relation given in equation (19) also has to be appropriately used for the evaluation of
Inl(l, l, λ, t, k) if l−1/λ < −1. The simple poles of the function �(l, l, λ, t) at l+k−1/λ = 0
where l and k are positive integers are due to intermediate state resonances. For example,
if λ = λ1 these poles correspond to one-photon intermediate state resonance. Similarly if
λ = λ2 the photon energy corresponds to two-photon intermediate state resonance. This is a
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Table 1. Three-photon transition matrix element D
(3)
n1 and D

(3)
n3 for atomic hydrogen in atomic

units.

n 2 3 4 5 6 7 8 9 10

D
(3)
n1 182.0 −107.5 −85.23 −65.35 −51.58 −41.87 −34.80 −29.47 −25.36

D
(3)
n3 – – 45.32 36.66 29.08 23.53 19.47 16.43 14.09

very important property of the solution we have obtained because any analytical expression
equivalent to equation (1) should exhibit this behaviour. Also, these simple poles as a function
of ω present in the original expression given in equation (1) are clearly manifested in our
solution by repeated application of the recurrence relation given in equation (19). If integrable
singularities are present, a standard method such as subtraction procedure has to be employed
for the numerical evaluation of the integrals in equations (35) and (36). Numerical values for
D

(3)
n1 and D

(3)
n3 given in equations (29) and (30) are presented in table 1 in atomic units for

various values of n. It is also easy to analytically continue these solutions and obtain the
three-photon transition amplitude in the hydrogen atom above the one photon threshold.
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